Stephanie Piper is not mentioned in this video, but she is cited in Video_04. We would like to thank her here, though, for finding and citing these videos by Alan Schoen: 'Shapes of Soap Films': Triply-Periodic Minimal Surfaces (Alan H. Schoen) parts 1 through 4:
Almsherqi, Z., Margadant, F., & Deng, Y. (2012).
A look through “lens” cubic mitochondria. Interface Focus, 2(5), 539–545.https://doi.org/10.1098/rsfs.2011.0120
Ball, P. (2001).
The Self-Made Tapestry: Pattern Formation in Nature. Oxford University Press.
Buratti, G. (2018).
Algorithmic Modelling of Triply Periodic Minimal Surface. Computational Morphologies, 55–62. https://doi.org/10.1007/978-3-319-60919-5_5
Feng, J., Fu, J., Yao, X., & He, Y. (2022).
Triply periodic minimal surface(TPMS) porous structures: From multi-scale design, precise additive manufacturing to multidisciplinary applications. International Journal of Extreme Manufacturing, 4(2). https://doi.org/10.1088/2631-7990/ac5be6
Gan, Z., Turner, M. D., & Gu, M. (2016).
Biomimetic gyroid nanostructures exceeding their natural origins. Science Advances, 2(5), 4–10.https://doi.org/10.1126/sciadv.1600084
Gorzelak, P., Kołbuk, D., Stolarski, J., Bącal, P., Januszewicz, B., Duda, P., … Salamon, M. A. (2023).
A Devonian crinoid with a diamond micro lattice. Proceedings of the Royal Society B: Biological Sciences, 290(1995), 1–9. https://doi.org/10.1098/rspb.2023.0092
Knippers, J. (2016).
From Minimal Surfaces to Integrative Structures–The SFB-TRR 141 in the Light of the Legacy of Frei Otto and the SFB 230 ‘Natürliche Konstruktionen’. Biomimetic Research for Architecture and Building Construction: Biological Design and Integrative Structures, 7-10.
Knippers, J., Nickel, K. G., & Speck, T. (Eds.). (2016).
Biomimetic Research for Architecture and Building Construction: Biological Design and Integrative Structures.
https://doi.org/10.1007/978-3-319-46374-2
Lorensen, W. E. (1987). Marching cubes: A high resolution 3d surface construction algorithm. Computer Graphics, 21, 163-169.Menges, A. (2012).
Material Computation: Higher Integration in Morphogenetic Design. Architectural Design, 82(2), 14–21. htps://doi.org/10.1002/AD.1374
Mensch, T. E., Delesky, E. A., Learsch, R. W., Foster, K. E., Yeturu, S. K., Srubar, W. V., & Miyake, G. (2021).
Mechanical evaluation of 3D printed biomimetic non-Euclidean saddle geometries mimicking the mantis shrimp.
Bioinspiration & biomimetics,
16(5), 056002.
Michielsen, K., & Stavenga, D. G. (2008).
Gyroid cuticular structures in butterfly wing scales: Biological photonic crystals. Journal of the Royal Society Interface,5(18), 85–94.
https://doi.org/10.1098/rsif.2007.1065
Rossi, M., Buratti, G. (2018). Computational Morphologies: Design Rules Between Organic Models and Responsive Architecture. Springer International Publishing. Kindle Edition.
Saranathan, V., Narayanan, S., Sandy, A., Dufresne, E. R., & Prum, R. O. (2021). Evolution of single gyroid photonic crystals in bird feathers. Proceedings of the National Academy of Sciences of the United States of America, 118(23),8–10. https://doi.org/10.1073/pnas.2101357118
Saranathan, V., Osuji, C. O., Mochrie, S. G. J., Noh, H., Narayanan, S., Sandy, A., … Prum, R. O. (2010). Structure, function, and self-assembly of single network gyroid (I4 132) photonic crystals in butterfly wing scales. Proceedings of the National Academy of Sciences of the United States of America, 107(26),11676–11681. https://doi.org/10.1073/pnas.0909616107
Tadayon, M., Amini, S., Wang, Z., & Miserez, A. (2018). Biomechanical Design of the Mantis Shrimp Saddle: A Biomineralized Spring Used for Rapid Raptorial Strikes. IScience, 8, 271–282. https://doi.org/10.1016/j.isci.2018.08.022